药学院肖百龙与生命学院李雪明课题组合作在《

 首页   - 要闻聚焦   - 学术科研   - 内容

药学院肖百龙与生命学院李雪明课题组合作在《自然》发文揭秘介导人体触觉感知的精巧分子机器结构与机制  

清华新闻网8月23日电  8月21日,《自然》 (Nature) 期刊以长文形式在线发表了由清华大学药学院肖百龙课题组与生命科学学院李雪明课题组合作撰写的《哺乳动物触觉感知离子通道Piezo2的结构与机械门控机制》(Structure and Mechanogating of the Mammalian Tactile Channel Piezo2)研究论文,首次报导了赋予人类自身触觉感知能力的机械力分子受体-Piezo2离子通道的高分辨率的冷冻电镜三维结构和精巧工作机制。该研究也是两个课题组继2018年1月22日合作在《自然》报导机械门控Piezo通道家族另一成员 — Piezo1离子通道的高分辨率三维结构和分子机制后,在该研究领域的又一重要研究成果,不仅有力推动了对Piezo通道家族的结构基础和分子机制的理解,也为基于Piezo通道的药物开发奠定了坚实的基础。《自然》同时刊发了评论员文章对该研究作了高度评价。

触觉作为五感之一,不仅赋予我们感知握手、轻抚、亲吻等愉悦性触碰以维持正常社交行为的能力,而且承担着人类能够熟练使用各种工具譬如触摸屏手机或鼠标的生物学基础。而在组织损伤或炎症等病理情况下,触觉感知功能的异常可以导致严重的机械超敏痛(又称触摸痛)。譬如,癌症或关节炎病患者会经常遭遇类似穿衣服或行走等轻微触碰所带来的剧烈疼痛,严重影响个体健康与生活质量。另外,自闭症患者通常显示较常人更为敏感的触觉感知能力,最近的研究提示这一触觉功能的异常可能是导致自闭症的重要病因之一。

触觉感知源于表达在初级感觉神经元上的机械力感知分子受体-机械门控阳离子通道对机械力刺激的响应,从而引起细胞外的阳离子例如钠离子和钙离子流入细胞,进而诱发神经细胞兴奋和信号传递,最终导致触觉的产生。2010年,美国斯克利普斯研究所的Ardem Patapoutian教授课题组鉴定发现,Piezo基因家族编码哺乳动物机械门控阳离子通道的必要成分。2012年,在Patapoutian教授课题组从事博士后研究的肖百龙博士与其同事合作在《自然》期刊报道Piezo蛋白构成机械门控阳离子通道的核心孔道组成成分,从而首次确立了机械门控Piezo通道这一全新离子通道家族类型。

随后的研究证明Piezo2介导哺乳动物的触觉、本体觉(譬如体位平衡感知)以及内脏觉(譬如肺的收缩扩张以及血压感知和心率调节)的机械感知,而Piezo1则被发现在多种细胞组织中承担机械力分子受体的功能参与调控血管及淋巴管发育、血压稳态、骨的生成与重塑等诸多功能。Piezo基因的遗传突变被发现引起多种人类遗传疾病,包括红细胞干瘪综合症、淋巴管水肿、远端关节挛缩症、触觉缺失症等。携带Piezo2功能缺失型突变的人体不仅表现出触觉以及本体感觉缺陷,且丧失病理状态下的机械超敏痛感知,确证Piezo2通道可以作为开发新型镇痛药物的重要靶点。

图a,Piezo2的冷冻电镜示意图,其中每一个亚基用不同的颜色表示;b,三个向外扭曲的跨膜桨叶区围成的穹顶状结构示意图,绿色虚线所标记的为跨膜区;c,含38次跨膜区的Piezo2拓扑结构示意图;d,Piezo2一个亚基结构组成展示图;e,Piezo2中心孔道模块区;f,由IH-CTD围绕而成的Piezo2与Piezo1的中心孔道区;g,Piezo2与Piezo1中心孔道区的半径分布图,包含跨膜区开关闸门(TM gate)以及胞内区狭窄颈部(Constriction neck);h,缺失帽子区的Piezo1与Piezo2突变体缺失机械刺激诱发的电流。

肖百龙博士课题组综合利用生化结构、电生理膜片钳、高通量药物筛选、转基因小鼠模型以及人类遗传学等多学科研究手段,聚焦解答机械门控Piezo通道如何将机械力刺激转化为电化学信号,以及其如何利用自身机械敏感性和通道特性来决定相关的生理病理功能这两方面的关键科学问题,并致力于开发以Piezo通道为靶点的新型药物及技术。迄今以通讯作者(含共同)身份在Piezo通道的三维结构解析、分子机制揭示、小分子药物发现、以及生理病理功能探索等方面取得了系列重要研究成果。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://bpctm.com/a/ganhuo/49.html